Aquatic ecosystem responses to Holocene climate change and biome development in boreal, central Asia
نویسندگان
چکیده
Boreal ecosystems are highly vulnerable to climate change, and severe ecological impacts in the near future are virtually certain to occur. We undertook a multiproxy study on an alpine lake (ESM-1) at the modern tree-line in boreal, southern Siberia. Steppe and tundra biomes were extensive in eastern Sayan landscapes during the early Holocene. Boreal forest quickly expanded by 9.1 ka BP, and dominated the landscape until c 0.7 ka BP, when the greatest period of compositional turnover occurred. At this time, alpine meadow landscape expanded and Picea obovata colonised new habitats along river valleys and lake shorelines, because of prevailing cool, moist conditions. During the early Holocene, chironomid assemblages were dominated by cold stenotherms. Diatoms for much of the Holocene were dominated by alkaliphilous, fragilarioid taxa, up until 0.2 ka BP, when epiphytic species expanded, indicative of increased habitat availability. C/N mass ratios ranged between 9.5 and 13.5 (11.1e15.8 C/N atomic ratios), indicative of algal communities dominating organic matter contributions to bottom sediments with small, persistent contributions from vascular plants. However, d13C values increased steadily from 34.9& during the early Holocene (9.3 ka BP) to 24.8& by 0.6 ka BP. This large shift in magnitude may be due to a number of factors, including increasing within-lake productivity, increasing disequilibrium between the isotopic balance of the lake with the atmosphere as the lake became isotopically ‘mature’, and declining soil respiration linked to small, but distinct retreat in forest biomes. The influence of climatic variables on landscape vegetation was assessed using redundancy analysis (RDA), a linear, direct ordination technique. Changes in July insolation at 60 N significantly explained over one-fifth of the variation in species composition, while changes in estimates of northern hemisphere temperature and ice-rafted debris events in the North Atlantic were also significant, but considerably less important. The potential importance of climate and biome development (tundra, steppe, cold deciduous forest and taiga) on different trophic levels (i.e. chironomid and diatom communities) in lake ESM-1 was also assessed using RDA. Climate predictors had a more significant influence on Holocene chironomid assemblages, especially July insolation at 60 N, estimates of regional precipitation and estimates of northern hemisphere temperature, while only the development of the taiga biome had a significant impact on these primary consumers. Diatom communities also had a small, but significant influence on Holocene chironomid populations, perhaps linked to variation in faunal feeding strategies. In contrast, climatic and biome predictors explained similar amounts of variation in the Holocene diatom assemblage (approximately 20% each), while chironomids themselves as predictors explained just under 7% of diatom variation. Lake acidity was inferred using a diatom inference model. Results suggest that after deglaciation, the lake did not undergo a process of gradual acidification, most likely due to the presence ; fax: þ44 (0) 20 7679 0565.
منابع مشابه
The relative influences of climate and catchment processeson Holocene lake development in glaciated regions
Following deglaciation, the long-term pattern of change in diatom communities and the inferred history of the aquatic environment are affected by a hierarchy of environmental controls. These include direct climate impacts on a lake’s thermal and hydrologic budgets, aswell as the indirect affects of climate on catchment processes, such as weathering, soil development, microbial activity, fire, a...
متن کاملHow Climate and Vegetation Influence the Fire Regime of the Alaskan Boreal Biome: the Holocene Perspective
We synthesize recent results from lake-sediment studies of Holocene fire-climatevegetation interactions in Alaskan boreal ecosystems. At the millennial time scale, the most robust feature of these records is an increase in fire occurrence with the establishment of boreal forests dominated by Picea mariana: estimated mean fire-return intervals decreased from ≥300 yrs to as low as ∼80 yrs. This f...
متن کاملComparison of Boreal Ecosystem Model Sensitivity to Variability in Climate and Forest Site Parameters
Ecosystem models are useful tools for evaluating environmental controls on carbon and water cycles under past or future conditions. In this paper we compare annual carbon and water fluxes from nine boreal spruce forest ecosystem models in a series of sensitivity simulations. For each comparison, a single climate driver or forest site parameter was altered in a separate sensitivity run. Driver a...
متن کاملPalaeodata-informed modelling of large carbon losses from recent burning of boreal forests
Wildfires play a key role in the boreal forest carbon cycle1,2, and models suggest that accelerated burning will increase boreal C emissions in the coming century3. However, these predictionsmaybe compromisedbecausebrief observational records provide limited constraints to model initial conditions4. We confronted this limitation by using palaeoenvironmental data to drive simulations of long-ter...
متن کاملGlobal patterns in the vulnerability of ecosystems to vegetation shifts due to climate change
Aim Climate change threatens to shift vegetation, disrupting ecosystems and damaging human well-being. Field observations in boreal, temperate and tropical ecosystems have detected biome changes in the 20th century, yet a lack of spatial data on vulnerability hinders organizations that manage natural resources from identifying priority areas for adaptation measures. We explore potential methods...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012